Recommendations for use of Taxane-containing chemotherapy regimens
for the treatment of early (operable) breast cancer

JUNE 2008 | Incorporates published evidence to March 2007

A CLINICAL PRACTICE GUIDELINE DEVELOPED BY NATIONAL BREAST AND OVARIAN CANCER CENTRE (NBOCC)*

This document supplements systemic adjuvant therapy guideline recommendations 12–22 (pp 8–10), specifically those about chemotherapy regimens contained in the National Breast Cancer Centre** Clinical practice guidelines for the management of early breast cancer, 2nd edition 2001.¹

© Cancer Australia 2011

Purpose

This guideline includes statements and recommendations based on available, high-level evidence about the use of taxanes in adjuvant and neoadjuvant chemotherapy regimens for the treatment of women with early (operable) breast cancer. The guideline aims to provide health professionals with information to assist in making management recommendations for improved patient outcomes. National Breast and Ovarian Cancer Centre (NBOCC)* also develops information specifically for consumers about early breast cancer diagnosis and treatment options.

For information on the Pharmaceutical Benefits Scheme (PBS) listing for taxanes, please see PBS section of this guideline.

Endorsed by:

** In February 2008, National Breast Cancer Centre (NBCC), incorporating the Ovarian Cancer Program, changed its name to National Breast and Ovarian Cancer Centre (NBOCC). In July 2011, NBOCC amalgamated with Cancer Australia to form a single national agency, Cancer Australia, to provide leadership in cancer control and improve outcomes for Australians affected by cancer.
Background

Early (operable) breast cancer is defined as tumours not more than five centimetres in diameter, with either impalpable or palpable but not fixed lymph nodes and with no evidence of distant metastases.¹

Taxanes are a class of chemotherapy compounds that includes paclitaxel, docetaxel and abraxane. As antimicrotuble agents, taxanes inhibit the normal process of reorganisation of the microtubule network essential for cellular function, which leads to a disruption of mitosis (cell division). Taxanes can be used as part of adjuvant or neoadjuvant chemotherapy regimens to treat early (operable) breast cancer. Of the three types of taxanes, only paclitaxel and docetaxel have been investigated in the adjuvant setting.

Clinical practice recommendations

Recommendations to individuals should be based on their risks without taxane-containing chemotherapy regimens, the absolute benefits and harms of treatment, and their preference. These factors should be discussed with the woman. Women receiving a taxane-containing regimen should be reviewed regularly and monitored for adverse effects by clinicians familiar with the drug.

<table>
<thead>
<tr>
<th>RECOMMENDATIONS</th>
<th>LEVEL OF EVIDENCE²⁴</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjuvant chemotherapy for women with early (operable) breast cancer:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A taxane-containing regimen should be considered for women at intermediate-to-high risk of breast cancer recurrence</td>
<td>I</td>
<td>Cochrane²⁴</td>
</tr>
<tr>
<td>The risks and benefits of using a taxane-containing regimen should be discussed with the woman, taking into consideration her individual risk profile and co-morbidities</td>
<td>I</td>
<td>NBCC* & NCCI²⁵</td>
</tr>
<tr>
<td>Optimal schedule of administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The optimal scheduling and dosing of taxanes in adjuvant chemotherapy regimens for survival benefits is unknown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decisions on scheduling and dosing of taxane-containing regimens should be based on factors other than survival outcomes, and take into consideration the woman’s individual risk profile and co-morbidities — consideration of toxicity effects should guide dosing and scheduling decisions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hormone receptor status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxane-containing regimens should be considered as an option regardless of tumour hormone-receptor status</td>
<td>I</td>
<td>Cochrane²⁴</td>
</tr>
<tr>
<td>Adverse events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women should be informed of the increased risk of febrile neutropenia associated with taxane-containing regimens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For women at significant risk of febrile neutropenia, primary prophylaxis with growth factor support should be considered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women should be informed of the potential adverse effects of a taxane-containing regimen and any uncertainties about long-term effects</td>
<td>I</td>
<td>Cochrane²⁴</td>
</tr>
<tr>
<td>Women unsuitable for anthracyclines</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RECOMMENDATIONS

If a woman is not suitable to receive an anthracycline-containing regimen, a taxane-containing non-anthracycline regimen can be considered

LEVEL OF EVIDENCE
II

REFERENCE
Jones

* In February 2008, National Breast Cancer Centre (NBCC), incorporating the Ovarian Cancer Program, changed its name to National Breast and Ovarian Cancer Centre (NBOCC). In July 2011, NBOCC amalgamated with Cancer Australia to form a single national agency, Cancer Australia, to provide leadership in cancer control and improve outcomes for Australians affected by cancer.

Statements of evidence

STATEMENTS

Adjuvant chemotherapy in women with early(operable)breast cancer:

Overall and disease free survival benefit
Inclusion of a taxane in adjuvant chemotherapy regimens improves disease-free and overall survival compared to non-taxane containing regimens

LEVEL OF EVIDENCE
I

REFERENCE
Cochrane

Type of taxane
There are similar benefits for disease-free and overall survival for taxane regimens containing either paclitaxel or docetaxel

LEVEL OF EVIDENCE
I

REFERENCE
Cochrane

Schedule and duration of administration
There are similar benefits for disease-free survival and overall survival for women treated with a taxane-containing regimen regardless of whether the anthracycline is administered sequentially or concurrently with the taxane

LEVEL OF EVIDENCE
I

REFERENCE
Cochrane

There are similar benefits for disease-free and overall survival for women treated with a taxane-containing regimen when adding or substituting a taxane as part of a chemotherapy regimen

LEVEL OF EVIDENCE
I

REFERENCE
Cochrane

There are similar benefits for disease-free and overall survival for women treated with a taxane-containing regimen:
• which is of the same duration as the non-taxane containing regimen, or
• which is of longer duration than the non-taxane containing regimen

Lymph node status
There are similar benefits for disease-free survival and overall survival between studies that include women with node positive disease only and studies that include women with node positive or node negative disease

LEVEL OF EVIDENCE
I

REFERENCE
Cochrane

No studies have reported results on the use of taxane-containing regimens in women with node negative disease only

Hormone receptor status
There was no level I evidence reporting efficacy of taxanes according to hormone receptor status
Results from individual randomised controlled phase III studies are conflicting and no recommendation can be made according to hormone receptor status.

Adverse events

Taxane-containing regimens are associated with an increased incidence of febrile neutropenia compared with non-taxane-containing chemotherapy regimens.

The increase in febrile neutropenia is most pronounced in concurrent anthracycline and taxane regimens.

Taxane-containing chemotherapy regimens are associated with decreased incidence of nausea and vomiting compared with a non-taxane containing chemotherapy regimen.

The decrease in nausea and vomiting is most pronounced where the inclusion of a taxane has resulted in lower doses of anthracycline.

Taxane-containing regimens may be associated with a reduction in cardiac toxicity compared with non-taxane-containing chemotherapy regimens, where the inclusion of a taxane has resulted in lower cumulative anthracycline exposure.

Neoadjuvant chemotherapy in women with early(operable)breast cancer:

One study reported that the inclusion of a taxane in a neoadjuvant chemotherapy regimen significantly increased pathological and clinical complete response rates compared to a non-taxane-containing chemotherapy regimen.

There is currently insufficient evidence to determine the optimal role of taxane-containing regimens in neoadjuvant chemotherapy treatment.

Summary of evidence

This guideline is based on one meta-analysis about the use of taxane-containing regimens for adjuvant treatment of early breast cancer and a NBOCC* systematic review about taxane-containing regimens for neoadjuvant treatment of early breast cancer.

* In February 2008, National Breast Cancer Centre (NBCC), incorporating the Ovarian Cancer Program, changed its name to National Breast and Ovarian Cancer Centre (NBOCC). In July 2011, NBOCC amalgamated with Cancer Australia to form a single national agency, Cancer Australia, to provide leadership in cancer control and improve outcomes for Australians affected by cancer.

Taxanes for neoadjuvant treatment of early (operable) breast cancer

The statements and recommendations about taxanes for adjuvant treatment of early breast cancer are based on a Cochrane review and meta-analysis, which includes available evidence from twelve randomised trials assessing the adjuvant use of taxanes in early (operable) breast cancer. The trials compared taxane-containing adjuvant...
chemotherapy regimens with adjuvant regimens not containing a taxane in the management of women with early (operable) breast cancer. Both pre-menopausal and post-menopausal women were eligible in all trials. Five of the twelve trials used paclitaxel.4,8-11 The remaining seven trials used docetaxel.5-7,12-15

(see table 1 for trial details)

Taxanes for adjuvant treatment of early (operable) breast cancer

The statements about taxanes for neoadjuvant treatment of early breast cancer are based on evidence from a NBOCC* systematic review3 of eight randomised trials16-23 assessing the neoadjuvant use of taxanes for early (operable) breast cancer.

(see table 3 for trial details)

* In February 2008, National Breast Cancer Centre (NBCC), incorporating the Ovarian Cancer Program, changed its name to National Breast and Ovarian Cancer Centre (NBOCC). In July 2011, NBOCC amalgamated with Cancer Australia to form a single national agency, Cancer Australia, to provide leadership in cancer control and improve outcomes for Australians affected by cancer.

Details of trials or studies

<table>
<thead>
<tr>
<th>TRIAL</th>
<th>PATIENT NUMBERS</th>
<th>INTERVENTION</th>
<th>COMPARATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALGB 93444</td>
<td>3121</td>
<td>AC x 4 \rightarrow P x 4</td>
<td>AC x 4</td>
</tr>
<tr>
<td>Jones5</td>
<td>1016</td>
<td>DC x 4</td>
<td>AC x 4</td>
</tr>
<tr>
<td>BCIRG 0016</td>
<td>1491</td>
<td>DAC x 6</td>
<td>FAC x 6</td>
</tr>
<tr>
<td>E21977</td>
<td>2889</td>
<td>AD x 4</td>
<td>AC x 4</td>
</tr>
<tr>
<td>ECTO5</td>
<td>904</td>
<td>AP x 4 \rightarrow CMF x 4</td>
<td>A x 4 \rightarrow CMF x 4</td>
</tr>
<tr>
<td>GEICAM 99069</td>
<td>1248</td>
<td>FEC90 x 4 \rightarrow P x 8</td>
<td>FEC90 x 6</td>
</tr>
<tr>
<td>HECOG10</td>
<td>595</td>
<td>E x 4 \rightarrow P x 3 \rightarrow CMF x 4</td>
<td>E x 4 \rightarrow CMF x 4</td>
</tr>
<tr>
<td>NSABP B-2811</td>
<td>3059</td>
<td>AC x 4 \rightarrow P x 4</td>
<td>AC x 4</td>
</tr>
<tr>
<td>FinHer12</td>
<td>1010</td>
<td>D x 3 (+/- T) \rightarrow FEC60 x 3</td>
<td>Vin x 3 (+/- T) \rightarrow FEC60 x 3</td>
</tr>
<tr>
<td>PACS 0113</td>
<td>1999</td>
<td>FEC100 x 3 #D x 3</td>
<td>FEC100 x 6</td>
</tr>
<tr>
<td>Taxit 21614</td>
<td>972</td>
<td>E x 4 \rightarrow D x 4 \rightarrow CMF x 4</td>
<td>E x 4 \rightarrow CMF x 3</td>
</tr>
<tr>
<td>BIG 2-9815</td>
<td>2887</td>
<td>A x 3 \rightarrow D x 3 \rightarrow CMF x 3 AD x 4 \rightarrow CMF x 4</td>
<td>A x 4 \rightarrow CMF x 3 AC x 4 \rightarrow CMF x 3</td>
</tr>
</tbody>
</table>

Notes: A=doxorubicin; C=cyclophosphamide; D=docetaxel; E=epirubicin; F=flurouracil; M=methotrexate; P=paclitaxel; T=trastuzumab; Vin=vinorelbine
Sub-group Analysis

<table>
<thead>
<tr>
<th>Sub-group Analysis**</th>
<th>Overall Survival OR (95% CI)</th>
<th>Disease-Free Survival OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall effect of taxanes</td>
<td>0.81 (0.75-0.88), p<0.00001</td>
<td>0.81 (0.77-0.86), pd0.00001</td>
</tr>
<tr>
<td>Type of taxane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Docetaxel</td>
<td>0.76 (0.67-0.86), p<0.00001</td>
<td>0.80 (0.74-0.87), pd0.00001</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>0.85 (0.76-0.94), p=0.001</td>
<td>0.82 (0.76-0.89), p<0.00001</td>
</tr>
<tr>
<td>Taxane given sequentially or concurrently with anthracycline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concurrent</td>
<td>0.79 (0.66-0.94), p=0.007</td>
<td>0.79 (0.70-0.90), p=0.0003</td>
</tr>
<tr>
<td>Sequential</td>
<td>0.82 (0.75-0.90), p<0.00001</td>
<td>0.81 (0.76-0.88), p<0.00001</td>
</tr>
<tr>
<td>Addition or substitution of taxane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addition</td>
<td>0.84 (0.76-0.93), p=0.0008</td>
<td>0.82 (0.76-0.89), pd0.00001</td>
</tr>
<tr>
<td>Substitution</td>
<td>0.76 (0.67-0.87), p<0.00001</td>
<td>0.78 (0.71-0.86), p<0.00001</td>
</tr>
<tr>
<td>Lymph node status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node positive only</td>
<td>0.81 (0.74-0.89), p<0.00001</td>
<td>0.81 (0.76-0.87), p<0.00001</td>
</tr>
<tr>
<td>Node positive & negative</td>
<td>0.81 (0.69-0.95), p=0.01</td>
<td>0.80 (0.71-0.91), p=0.0004</td>
</tr>
<tr>
<td>Duration of chemotherapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longer duration</td>
<td>0.85 (0.77-0.94), p=0.002</td>
<td>0.83 (0.77-0.90), p<0.00001</td>
</tr>
<tr>
<td>Same duration</td>
<td>0.76 (0.67-0.86), p<0.00001</td>
<td>0.77 (0.70-0.85), p<0.00001</td>
</tr>
</tbody>
</table>

Notes: CI=confidence interval; OR=odds ratio; **All sub-group analyses were statistically significant**

Summary of Trial or Study Results

Adjuvant chemotherapy

<table>
<thead>
<tr>
<th>TRIAL</th>
<th>PATIENT NUMBERS</th>
<th>INTERVENTION</th>
<th>COMPARATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSABP B-27</td>
<td>1605</td>
<td>AC x 4 → D x 4</td>
<td>AC x 4</td>
</tr>
<tr>
<td>MDACC</td>
<td>174</td>
<td>P x 4 → FAC x 4</td>
<td>FAC x 4</td>
</tr>
<tr>
<td>Dieras</td>
<td>200</td>
<td>AP x 4 #T</td>
<td>AC x 4 #T</td>
</tr>
<tr>
<td>Learn</td>
<td>144</td>
<td>AC x 4 → T → D x 4</td>
<td>AC x 4 #T</td>
</tr>
<tr>
<td>Malamos</td>
<td>35</td>
<td>PE x 3</td>
<td>FEC x 3</td>
</tr>
<tr>
<td>Lee</td>
<td>78</td>
<td>DC x 4</td>
<td>AC x 4</td>
</tr>
<tr>
<td>ACCOG</td>
<td>363</td>
<td>AD x 6</td>
<td>AC x 6</td>
</tr>
<tr>
<td>Aberdeen</td>
<td>162</td>
<td>CVAPr x 4 → D x 4</td>
<td>CVAPr x 4 #CVAPr x 4</td>
</tr>
</tbody>
</table>

Notes: A=doxorubicin; C=cyclophosphamide; D=docetaxel; E=epirubicin; F=flurouracil; M=methotrexate; P=paclitaxel; T=trastuzumab; V=vinorelbine
Overall survival

Overall survival data were available for eleven trials. Pooled analyses of the trial results indicated that taxane-containing regimens improved overall survival, with a relative risk reduction of 19% compared to non-taxane-containing control groups \((p<0.00001)\). The absolute risk reduction for taxane-containing regimens was \(-2.6\%\) compared to non-taxane containing regimens.\(^2\)

Disease-free survival

Disease-free survival data were available for eleven trials. Pooled analyses of the trial results indicated that taxane-containing regimens improved disease-free survival, with a relative risk reduction of 19% compared to non-taxane-containing control groups \((p<0.00001)\). The absolute risk reduction for taxane-containing regimens was \(-4.1\%\) compared to non-taxane containing regimens.\(^2\)

Sub-group analysis

Post-hoc analysis of the data by various sub-groups of trials did not alter the overall or disease-free survival estimates,\(^2\) see Table 2 (all remained statistically significant).

Scheduling of taxane administration

The Cochrane meta-analysis\(^2\) found statistically significant overall survival and disease-free survival benefits in side-by-side post-hoc analyses that were not altered by scheduling or duration of chemotherapy. Taxane treatment was given either concurrently with anthracycline or sequentially in the trials. Meta-analysis\(^2\) results investigated trial data where there was an ‘addition’ of a taxane to the control chemotherapy regimen and where the taxane was ‘substituted’ for part of the control chemotherapy regimen. Optimal scheduling of adjuvant taxane-containing chemotherapy regimens is unclear from the available trial results. The recommendation on scheduling reflects that regardless of how a taxane is used in a chemotherapy regimen, there are overall survival and disease-free survival benefits for women. Results of ongoing trials may provide further evidence for optimal scheduling.

Dose density

Questions regarding dose density were outside the scope of the Cochrane meta-analysis.

HER2 status

There were no available trial data about taxanes and HER2 status at the time of the Cochrane review and meta-analysis\(^2\) (May 2007). Early and retrospective analysis of tissue from the CALGB\(^{26}\) study (published after March 2007) indicates that the addition of paclitaxel to an adjuvant chemotherapy regimen improved outcomes in HER2 positive women. Further trial results are required to determine definitive recommendations regarding taxanes and HER2 positive early breast cancer patients. This guideline relates specifically to taxanes in adjuvant chemotherapy regimens. It is acknowledged that taxanes have a key role in adjuvant trastuzumab (Herceptin\(^{\text{®}}\)) trials.

Adverse events
The twelve trials included in the Cochrane review used a variety of control chemotherapies and different dosing and scheduling of the taxane drug. Toxicities need to be considered on a trial-by-trial basis to interpret tolerability of each taxane-containing regimen.

Cardiac toxicity

Pooled analysis of six trials reporting data on cardiotoxicity showed no difference in the risk of cardiotoxicity between taxane-containing and non-taxane-containing regimens. However, for trials in which the use of a taxane resulted in a reduction or omission of anthracycline, the risk of cardiotoxicity was reduced in the taxane-containing arm (OR 0.38, 95% CI 0.15-0.98, p=0.05).

Febrile neutropenia

Pooled analysis from seven trials demonstrated a significant increase in febrile neutropenia associated with the taxane-containing regimens (p<0.0001). The risk was particularly high in the trials that administered the taxane concurrently with an anthracycline, rather than in those that administered sequential taxane and anthracycline treatment.

Other adverse events

Grade III/IV nausea and/or vomiting were less common in the taxane-containing regimens (OR 0.55, 95% CI 0.39-0.77, p=0.0006). There was no difference shown between treatment arms for both grade III/IV fatigue or grade III/IV stomatitis. There was no difference between treatment groups in the number of cases of secondary leukaemia or myelodysplasia reported (25 from taxane-containing regimens, 23 from control regimens). Treatment-related deaths were uncommon and there was no difference between taxane-containing and non-taxane-containing groups (seven treatment-related deaths in each treatment group). There were insufficient and inconsistently reported data for meta-analysis of neurotoxicity or nail changes; however, both toxicities were reported with greater frequency in the taxane-containing arm where reported, with the exception of one study that contained vinorelbine in the control arm and reported greater neurotoxicity in this arm.

Quality of life

Formal analyses of quality of life for patients receiving taxanes are limited, with only two trials reporting on quality of life data. One trial reported that both treatment arms experienced a transient reduction in the quality of life score, with a greater reduction in the taxane-containing regimen. However, at first follow-up, both treatment arms had returned to base-line. The other trial did not demonstrate any difference in quality of life scores between the two treatment arms, either at the beginning or at the end of chemotherapy. Further research is required to determine the short and long-term effects of taxanes on quality of life.

Neoadjuvant therapy

Evidence is available from eight randomised trials assessing the neoadjuvant use of taxanes for early breast cancer. Only one of the trials was large enough to detect survival differences (N=1605), the remaining trials were small, enrolling between 35 and 365 participants. The trials show no significant difference between taxane-containing and non-taxane-containing neoadjuvant chemotherapy regimens for overall, disease-free or relapse-free survival. There was a trend that taxane-containing regimens achieved higher clinical and pathological response rates compared to non-taxane-containing regimens, however, only one trial reported a statistically significant increase. Breast conserving therapy is performed at least as often after taxane-containing neoadjuvant chemotherapy compared to non-taxane-containing neoadjuvant chemotherapy. Toxicity outcomes are not...
consistently reported in all trials and often the number of events are small, therefore it is difficult to determine whether the toxicity profiles differ significantly between taxane and non-taxane-containing neoadjuvant regimens. The most commonly, and consistently, reported outcome was febrile neutropenia, with four trials reporting higher rates in the taxane-containing arms compared to the control arms.

Further information is needed to determine the optimal role of neoadjuvant taxanes for treatment of early breast cancer.

Strengths and weaknesses of the evidence

The trials for adjuvant use of taxanes are large, well designed, and well conducted. Some clinical heterogeneity existed between trials, with variation in choice of control chemotherapy, doses and scheduling of chemotherapy. Post-hoc analyses in a side-by-side comparison of pooled data were performed for a number of subgroups. Information about optimal taxane regimens and efficacy in certain subgroups is not yet available.

Only one trial for neoadjuvant use of taxanes was large enough to detect survival benefits. Future trials and reviews are needed to answer important unanswered questions on neoadjuvant use of taxanes in early breast cancer.

Clinical practice recommendations developed by NBOCC* will be reviewed and revised as required as additional significant evidence becomes available.

* In July 2011, National Breast and Ovarian Cancer Centre (NBOCC) amalgamated with Cancer Australia to form a single national agency, Cancer Australia, to provide leadership in cancer control and improve outcomes for Australians affected by cancer.

Unanswered questions

Important unanswered questions about the use of taxanes in early breast cancer are outlined below; some of these should be addressed in ongoing trials and with longer follow-up of reported trials:

- optimal sequence/timing/duration of adjuvant taxanes with chemotherapy
- optimal use/sequence/timing/duration of neoadjuvant taxanes with chemotherapy
- the relative benefits and harms of different taxanes
- potential long term/late toxicity associated with taxanes
- use of taxanes in patients with node-negative tumours
- use of taxanes in patients with >4 involved axillary lymph nodes
- efficacy of taxanes with regards to hormone receptor status
- efficacy of taxanes with regards to HER2 receptor status
- relative benefits and harms of neoadjuvant use of taxanes compared to adjuvant use
- the short and long-term effects of taxanes on quality of life.

Ongoing and additional trials or studies

A number of additional phase III trials investigating the adjuvant and neoadjuvant use of taxanes for early breast cancer are ongoing and/or awaiting results:

- eight ongoing trials investigating the use of taxanes for adjuvant treatment of early breast cancer (Brain,27 GEICAM 9805,28 Goim 9902,29 GONO-MIG 5,30 NCI-H99-0038,31 NCIC CTG MA.21,32 PACS 04,33 ICR TACT 34)
• two ongoing trials investigating the use of taxanes for neoadjuvant treatment of large operable breast cancer (EORTC-10994, INTENS: IKO 2005-01)
• one ongoing trial comparing adjuvant treatment to neoadjuvant treatment of taxanes for early breast cancer (ECTO).

References

27 Brain EGC, Bachelot T, Serin D et al. Phase III trial comparing doxorubicin docetaxel (AT) with doxorubicin cyclophosphamide (AC) in the adjuvant treatment of high-risk node negative (pN0) and limited node positive (pN+/ =3) breast cancer (BC) patients (pts): First analysis of toxicity. J Clin Oncol ASCO Annual Meeting Proceedings 2004 22;14S:Abstract 617.

***This article was considered by the NBOCC’s Taxanes Subgroup but published after March 2007

Acknowledgements

Membership of NBOCC* taxanes subgroup

This guideline was developed by a multidisciplinary working group convened by NBOCC*

Dr Craig Lewis Medical Oncologist (Chair)
Dr Alison Davis Medical Oncologist
Dr Tom Ferguson Medical Oncology Advanced Trainee
Dr James French Surgeon
Ms Judy Iasiello Breast Care Nurse
Ms Elisabeth Kochman Consumer Representative
Dr Anna Nowak Medical Oncologist

* In July 2011, National Breast and Ovarian Cancer Centre (NBOCC) amalgamated with Cancer Australia to form a single national agency, Cancer Australia, to provide leadership in cancer control and improve outcomes for Australians affected by cancer.

Membership of NBOCC* Early Breast Cancer Working Group

The development of this guideline was overseen by a multidisciplinary working group convened by NBOCC*: Dr Karen Luxford (Facilitator), Associate Professor Michael Bilous, Ms Elizabeth Kochman, Mr James Kollias, Dr Craig Lewis, Dr Jonathon Osborne, Dr Sue Pendlebury, Ms Leanne Pentland, Associate Professor Kelly-Anne Phillips, Ms Sue Rovelli, Dr Jane Turner

* In July 2011, National Breast and Ovarian Cancer Centre (NBOCC) amalgamated with Cancer Australia to form a single national agency, Cancer Australia, to provide leadership in cancer control and improve outcomes for Australians affected by cancer.

NBOCC* staff

Ms Heidi Wilcoxon Senior Project Officer (Project lead)
Ms Katrina Anderson Project Officer—Research
Dr Karen Luxford General Manager
Ms Alison Pearce Program Manager
Ms Rosemary Vagg Senior Project Officer—Research

* In July 2011, National Breast and Ovarian Cancer Centre (NBOCC) amalgamated with Cancer Australia to form a single national agency, Cancer Australia, to provide leadership in cancer control and improve outcomes for Australians affected by cancer.

External review

NBOCC* acknowledges those who gave their time to provide comment on the draft guideline recommendations as part of the external review process

Full details of adjuvant trial results are provided in the Cochrane review Taxanes for adjuvant treatment of early breast cancer, which can be accessed via the Cochrane Library website: www.cochrane.org

Full details of neoadjuvant trial results are provided in the document Taxanes for neoadjuvant treatment of early breast cancer: a systematic review, which can be accessed via the NBOCC* website: www.nbocc.org.au

* In July 2011, National Breast and Ovarian Cancer Centre (NBOCC) amalgamated with Cancer Australia to form a single national agency, Cancer Australia, to provide leadership in cancer control and improve outcomes for Australians affected by cancer.

Pharmaceutical Benefits Scheme listing for taxanes; paclitaxel and docetaxel

As of September 2007. For updates after this date go to http://www.pbs.gov.au
Paclitaxel and docetaxel are currently subsidised for the following indications in the treatment of early breast cancer:

- Paclitaxel – *adjuvant* treatment of node-positive breast cancer administered sequentially to an *anthracycline* and cyclophosphamide
- Docetaxel – *adjuvant* treatment of node-positive breast cancer in combination with an anthracycline and cyclophosphamide
- Paclitaxel and docetaxel – treatment of HER2 positive *early breast cancer* in combination with trastuzumab

Development process

Priority topic areas for NBOCC* guideline development are determined in consultation with key stakeholders including experts in relevant disciplines and consumer representatives. A specific multidisciplinary Working Group, including consumers, is established for each topic identified and is involved in all aspects of guideline development. A systematic evidence review is undertaken for each guideline. All members are asked to declare any conflicts of interest and these declarations are recorded. The content of the guideline is not influenced by any external funding body. The guideline is reviewed externally by key stakeholders and the wider community and endorsement is sought from relevant professional colleges and groups in Australia.

* In July 2011, National Breast and Ovarian Cancer Centre (NBOCC) amalgamated with Cancer Australia to form a single national agency, Cancer Australia, to provide leadership in cancer control and improve outcomes for Australians affected by cancer.
National Breast and Ovarian Cancer Centre* is funded by the Australian Government Department of Health and Ageing.

* In July 2011, National Breast and Ovarian Cancer Centre (NBOCC) amalgamated with Cancer Australia to form a single national agency, Cancer Australia, to provide leadership in cancer control and improve outcomes for Australians affected by cancer.